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Abstract

Contact electrograms (EGMs) can be used to guide
catheter ablation in the treatment of atrial fibrillation.
However, our understanding of the link between electro-
physiology (EP) and the underlying myocardial substrate
is limited. We use neural networks and EGMs to esti-
mate the amount of collagen within the field of view of the
recording electrodes. EGMs were recorded from rat ven-
tricular slices (n=15). Samples were imaged using sec-
ond harmonic generation (SHG) microscopy, allowing for
quantification of collagen. A convolutional neural network
(1D-ResNet) was trained to estimate collagen distribution
from the recorded EGMs. Each electrogram, recorded for
one cycle length, was paired with a collagen index for the
corresponding electrode. The total number of samples was
91,239. We successfully estimated collagen index in the
testing set, with an absolute error of 0.022±0.024, and
a correlation coefficient of R=0.81 between the predicted
and true collagen amount. The network identifies main
morphological features of the EGMs as useful features for
quantifying collagen underneath the electrode. This work
provides a framework and proof of concept that location of
scar can be predicted from EGMS using neural networks.

1. Introduction

Contact EGMs have been used to help identify abla-
tion targets, exploiting features of the electrogram that can
be interpreted by clinicians. An example is fractionation,
which is assumed to be indicative of slowly-conducting tis-
sue (scar) [1]. However, there is no consensus as to how
the morphology of EGMs correlates to the structural prop-
erties of the myocardium, and there have been studies that
show that traditionally identified features are not robust
markers of structural pathophysiology, and consequently
catheter ablation success rates remain low [2].

In recent studies, machine learning methods have been
used to classify myocardial substrate from intracardiac
electrograms using hybrid and/or in silico data [3]. How-
ever, analysis and characterisation of biological data along-
side paired structural data, has been qualitative (classifica-
tion) rather than quantitative (regression).

2. Methods

2.1. Myocardial slices preparations

All procedures were carried out according to the Animal
(Scientific Procedures) Act 1986. Adult female Sprague-
Dawley rats (350g-500g) underwent euthanasia by disloca-
tion of the neck, after sedation, and confirmed by cessation
of circulation. Hearts were explanted, and the ventricular
tissue samples were prepared for the slicing procedure as
previously described [4]. The tissue blocks were cut into
a 6 × 6 mm surface area and attached to the specimen
holder of the high-precision vibrating microtome (7000
smz, Campden Instrument Ltd.UK). The thickness of each
slice was set at 300 µm which was derived sequentially
through the thickness of the ventricular wall.

2.2. EP data collection

The electrophysiological properties of the ventricular
slices were measured through the multielectrode array
(MEA) system (USB-MEA60-Inv, Multi-Channel Sys-
tems, Reutlingen, Germany). The MEA system used in
this experiment consists of 60 gold electrodes arranged
in an 8 matrix with inter-electrode distances of 700 µm
and 100 µm electrode diameter. Stimulation was carried
out using an STG stimulus generator programmed by MC
Stimulus II software (version 3.4.4, Multi-Channel Sys-
tems). A biphasic stimulus of 2 ms in duration and be-
tween 1000 – 2500 mV in amplitude (120% above the
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threshold of activation) was applied for each 10 s record-
ing with a pacing rate of 1 Hz, 1.33 Hz, 2 Hz, 3 Hz, or
4 Hz applied at all electrodes from one of the outer rows
of the MEA grid. The slices were placed in the middle of
the MEA, covering all electrodes and oxygenated Tyrode’s
solution was superfused. The temperature of the solution
was maintained at 37 ◦C. Slice positions on the MEA plate
were imaged using a digital camera to record electrode lo-
cations.

2.3. EGM preprocessing

EGM recordings were imported into Python using
Multi-Channel Systems MCDataTool software, and pro-
cessed with custom scripts. Each recording was partitioned
into stimulation events which we refer to as activations.
Activations of each experiment were z-score normalized,
and the median signal of the 36 electrodes across each ac-
tivation was subtracted. This ensured that the baseline and
the stimulus artefact were removed.

2.4. Structural data collection

After electrophysiological recordings, slices were fixed
with paraformaldehyde in preparation for imaging with a
Leica SP5 inverted confocal microscope, and a multipho-
ton laser Newport Spectra-Physics Two Photon Laser –
Mai Tai DeepSee was used for the second harmonic gen-
eration (SHG). SHG imaging was done at a wavelength of
845 nm [5]. To extract the collagen distribution of the slice
and incorporate the different distributions from different
slices, we processed the samples with an ImageJ pipeline,
and labelled each pixel as collagen or not collagen based
on a threshold.

After the processing of the microscopy images, the posi-
tions of the MEA electrodes were superimposed. We used
a custom method based on landmarks to register the slice in
the microscopy image and the image of electrode positions
on top of the MEA. Each electrode was annotated with the
proportion of pixels labelled as collagen within its field of
view (FoV); we called this number the collagen index. The
electrode field of view was set to be 350 µm, equal to half
of the interelectrode distance of the MEA system.

2.5. Deep learning model

A one-dimensional ResNet architecture is used [6, 7].
First, the sample passes through a convolutional layer fol-
lowed by batch normalization and ReLU activation. This
is followed by four residual blocks, and finally three lin-
ear layers. All convolutional layers, including those of the
residual blocks, use a kernel of size 17 and stride 2, except
for the convolution on the identity branch of the residual
block, which uses a kernel of size 1 and stride 1, and the

initial convolution of the network, which uses a kernel of
size 17 and stride 1. Batch normalization and the ReLU ac-
tivation function are used after every convolutional layer.
The dimensions of the feature spaces after each layer are
shown in Table 1.

Table 1. Output feature space sizes for the 1D ResNet
architecture, given an input of 1× 4096.

Name Output size
conv1 16× 4096
resblock1 32× 1024
resblock2 64× 256
resblock3 128× 64
resblock4 256× 16
linear1 1× 256
linear2 1× 128
linear3 1× 1

3. Results

3.1. Model training

We trained the model on the dataset created from 11
slices across 4 different rat hearts. One sample consisted of
a single activation from one electrode and the correspond-
ing collagen index for the electrode, as described in sec-
tions 2.2 and 2.4. To improve model robustness, we only
selected samples whose EP mean wavelet coefficients was
above 0.23. The threshold was chosen after looking at the
means of the wavelet coefficients of valid and invalid sam-
ples respectively. Samples which were either corrupted
with noise or lacked any signal, due to poor contact be-
tween the electrode and the slice, were deemed as invalid.
We considered the first 165 ms of every sample, as the
subsequent information was determined as baseline only
and there was no useful information except for noise after
that time. After this process, the final dataset consisted of
91,239 samples, from 396 locations. The distribution of
collagen index in the dataset is shown in Figure 1.

We applied 10-fold cross-validation during training; for
each fold 10% of the data was used as the testing set, and
we trained on the remaining 90%. The train/test parti-
tioning was done on the electrodes and not the individual
samples, to ensure that the distribution of the testing data
was unseen by the model. Training lasted for 20 epochs,
with the Adam optimizer and the root mean square error
(RMSE) as the loss function.

3.2. Performance

The model was evaluated on the testing set which con-
sisted of 9,576 samples from 40 electrodes. All the metrics
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Figure 1. Distribution of the collagen index of the dataset.
A value of 1 represents complete collagen coverage, while
a value of 0 means that there is no collagen, in the field of
view of the electrode.
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Figure 2. Median predictions of the testing set across all
folds of cross-validation. Inset: Distribution of interquar-
tile range and standard deviation for the predictions of each
electrode.

reported are averages across testing electrodes and across
the ten cross validation folds. The RMSE in the testing set
was 0.035. Comparatively, the distribution of collagen in-
dex had a standard deviation of 0.050, considerably larger
that the RMSE of our predictions. The mean absolute error
| ytrue−ypredicted |= 0.022±0.024 also suggests that the
model generalized well.

Due to the nature of the data, there are multiple activa-
tions for the same electrode, so two important metrics are:
1) the error in the median prediction across all samples for
one particular electrode, and 2) the average standard de-
viation, sd, and the average interquartile range, IQR, of

the predictions for one electrode. The median predictions
per electrode are shown in Figure 2. The model captures
the trend of the data, with a Pearson correlation coefficient
Ry,ŷ = 0.81.

3.3. Interpretation

We investigated the response of the model to the mor-
phology of the EGMs. After the first convolution of the
trained network, only the parts of the EGM that are use-
ful for the prediction are considered (highlighted) by the
remainder of the network. We visualized which parts of
EGMs are highlighted by the first convolution, and used in
the downstream 16-dimensional feature space. The net-
work highlights only the parts of the EGM during acti-
vation of the tissue, and the features are correlated with
the slope of depolarization and repolarization, the peak-
to-peak voltage and fractionation. An example of this is
shown in Figure 3, for one of the 16 dimensions of the
feature space.
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Figure 3. EGMs from high-collagen (upper panel) and
low-collagen (lower panel) locations, and the highlighted
segments in one of the feature space dimensions of the con-
volutional network. The estimates of the collagen index
are equal to the ground truth in these examples. In this
dimension, the negative part of the downslope is the most
important characteristic for the prediction.
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4. Discussion

In this ex vivo slice model we accurately predicted the
amount of collagen within a field of view of an electrode
in regions of cardiac tissue previously unseen by the model
using the contact electrogram. Physiologically this is anal-
ogous to estimating the degree of fibrosis, and the effective
conductivity of the tissue. By using deep convolutional
networks for this task, we utilized all of the available EGM
signal without bias to regions of interest. An alternative
option would be to use specific features, which are auto-
matically either manually selected or generated by signal
processing pipelines. By leveraging deep learning models
and training on the raw recordings, morphological features
were selected by the network rather than based on previous
clinical assumptions. Furthermore, instead of limiting our
work to the training and evaluation of the model, we sought
to interpret the inner mechanics of the neural network by
highlighting those morphological parts of the EGMs that
activate the first layer of the network, thereby giving in-
sight into the areas of importance. This practice only ex-
amines the very first part of the model, so it does not fully
provide mechanistic explainability, but it offers useful in-
sight and we confirmed that the features highlighted (such
as voltage magnitude and depolarization slope, as shown
in 3) have clinical relevance. The network also generalizes
well to samples from unseen myocardium.

We observed that the predictions are less accurate as the
collagen index increases (see Figure 2). This is expected
since there is only a small number of samples with a low
collagen index, as shown in Figure 1. The distribution of
sd and iqr confirms that predictions are within a reason-
able distance of the ground truth for the majority of the
samples.

One of the most crucial steps of the work presented, is
the localization of the electrodes on the tissue. The hy-
pothesis that the EGM signal encodes information about
the conductivity of the tissue requires that our estimated
position is at least within the FoV of the true electrode po-
sition. However, there is no firm consensus on the size of
the FoV of an electrode. We used a model-based approach
and, given the dimensions of the electrodes, constructed
the resulting transfer function that appropriately weights
action potentials to produce EGMs [8]. As mentioned in
section 2.4, we specified the radius of the field of view to
be 350 µm. This is the radius where the weights of the
action potentials are equal to half of the action potential in
the location of the electrode.

5. Conclusion

We present a method of quantifying the amount of col-
lagen within the field of view of an electrode on a MEA
system, thus confirming our hypothesis that signals from

unipolar EGMs can be used to accurately predict structural
information of the substrate. By using deep learning meth-
ods to solve this problem, the model was trained using all
of the available EGM signal, and the important regions,
which most strongly influence the prediction of the net-
work, were highlighted, providing insight into the mechan-
ics of the network and offering clinical explainability. This
work can be extended with clinical data from high density
mapping catheters, and may provide clinicians with a tool
to accurately estimate the local degree of fibrosis in my-
ocardial tissue.
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